Learning a Reactive Restart Strategy to Improve Stochastic Search

نویسندگان

  • Serdar Kadioglu
  • Meinolf Sellmann
  • Markus Wagner
چکیده

Building on the recent success of bet-and-run approaches for restarted local search solvers, we introduce the idea of learning online adaptive restart strategies. Universal restart strategies deploy a fixed schedule that runs with utter disregard of the characteristics that each individual run exhibits. Whether a run looks promising or abysmal, it gets run exactly until the predetermined limit is reached. Bet-and-run strategies are at least slightly less ignorant as they decide which trial to use for a long run based on the performance achieved so far. We introduce the idea of learning fully adaptive restart strategies for blackbox solvers, whereby the learning is performed by a parameter tuner. Numerical results show that adaptive strategies can be learned effectively and that these significantly outperform bet-and-run strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models

The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...

متن کامل

Restart strategies for GRASP with path-relinking heuristics

GRASP with path-relinking is a hybrid metaheuristic, or stochastic local search (Monte Carlo) method, for combinatorial optimization. A restart strategy in GRASP with path-relinking heuristics is a set of iterations {i1, i2, . . .} on which the heuristic is restarted from scratch using a new seed for the random number generator. Restart strategies have been shown to speed up stochastic local se...

متن کامل

An Empirical Study of a New Restart Strategy for Randomized Backtrack Search

We propose an improved restart strategy for randomized backtrack search and compare its performance to other search mechanisms in the context of solving a tight real-world resource allocation problem. The restart strategy proposed by Gomes et al. [1] requires the specification of a cutoff value determined from an overall profile of the cost of search for solving the problem. When no such profil...

متن کامل

Characterization of a New Restart Strategy for Randomized Backtrack Search

We propose an improved restart strategy for randomized backtrack search, and evaluate its performance by comparing to other heuristic and stochastic search techniques for solving random problems and a tight real-world resource allocation problem. The restart strategy proposed by Gomes et al. [1] requires the specification of a cutoff value determined from an overall profile of the cost of searc...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017